2,147 research outputs found

    Base heating methodology improvements, volume 1

    Get PDF
    This document is the final report for NASA MSFC Contract NAS8-38141. The contracted effort had the broad objective of improving the launch vehicles ascent base heating methodology to improve and simplify the determination of that environment for Advanced Launch System (ALS) concepts. It was pursued as an Advanced Development Plan (ADP) for the Joint DoD/NASA ALS program office with project management assigned to NASA/MSFC. The original study was to be completed in 26 months beginning Sep. 1989. Because of several program changes and emphasis on evolving launch vehicle concepts, the period of performance was extended to the current completion date of Nov. 1992. A computer code incorporating the methodology improvements into a quick prediction tool was developed and is operational for basic configuration and propulsion concepts. The code and its users guide are also provided as part of the contract documentation. Background information describing the specific objectives, limitations, and goals of the contract is summarized. A brief chronology of the ALS/NLS program history is also presented to provide the reader with an overview of the many variables influencing the development of the code over the past three years

    Annual Fixed Costs of Operating Container Nurseries in Ohio Differentiated by Size of Firm and Species of Plant

    Get PDF

    Controlled ion fragmentation in a 2-D quadrupole ion trap for external ion accumulation in ESI FTICR mass spectrometry

    Get PDF
    AbstractUndesired fragmentation of electrospray generated ions in an rf multipole traps can be problematic in many applications. Of special interest here is ion dissociation in a 2-D quadrupole ion trap external to a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) used in proteomic studies. In this work, we identified the experimental parameters that determine the efficiency of ion fragmentation. We have found that under the pressure conditions used in this study there is a specific combination of the radial and axial potential well depths that determines the fragmentation threshold. This combination of rf and dc fields appears to be universal for ions of different mass-to-charge ratios, molecular weights, and charge states. Such universality allows the fragmentation efficiency of the trapped ions in the course of capillary liquid chromatography (LC) separation studied to be controlled and can increase the useful duty cycle and dynamic range of a FTICR mass spectrometer equipped with an external rf only 2-D quadrupole ion trap
    • …
    corecore